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Our purpose in this chapter is to clarify the role of imagery in students’ mathematical learning 
and reasoning. In pursuit of this goal, we address interdependencies among imagery, reflection, 
scheme, and meaning as theoretical constructs and illustrate their interdependence by examples. 
Our motive for this expanded charge is that while the notion of schemes and scheme 
development is sometimes discussed in studies of students’ mathematical learning, the role of 
imagery in that process is often neglected, yet it is central to the development of productive 
mathematical meanings. Often people doing mathematics education research pay insufficient 
attention to the very nuanced ways in which people understand a situation – what their image of 
the situation is. As a counterpoint, Thompson (1996) spoke of students’ images of a solution to 
an algebraic equation. “Their image of solving equations often is of activity that ends with 
something like ‘ .’ So, when they end with something like ‘ ’ or ‘ ’ they conclude 
without hesitation that they must have done something wrong” (Thompson, 1996, p. 274).  

Imagery 

We state at the outset that by “imagery” we mean far more than “visualization”. Imagining 
something one has seen, or producing something as if seen, indeed falls within the category of 
imagery. But recalling something one has said, thought, done, or felt also falls within the 
category of imagery. In an act of re-presentation1, a person recalls having an experience. The 
experience might have been having a thought or feeling, having done something in some context, 
having interpreted something in a particular way, recalling having recalled something, or other 
acts of recollection. In general, by “image” we mean the re-presentation of experience. We use 
“imagery” to refer to images collectively. 
 While we say imagery exceeds visualization, we acknowledge that “visualization” has 
been used sometimes with broad meaning, including what we call “creative imagery”. Creative 
imagery is the construction of an image one has not experienced but is grounded in experience. 
One example is Galileo’s thought experiment of repeatedly dropping two iron balls of different 
sizes joined by ever thinner filaments to infer all masses in a vacuum fall identically (Clement, 
2018; Miller, 1996). Another is Einstein’s thought experiment of a person falling in an elevator 
to infer gravity is akin to acceleration within an inertial frame of reference (Miller, 1996). 
Neither Galileo nor Einstein had experiences that were recalled as such. Rather, they assembled 
images from experience in novel ways. 
 Experiences are never recalled veridically. Our distinction between creative imagery and 
recalled experience is therefore muddied by the fact that initial experiences and recalled 
experiences are constructed using schemes one currently has, which can change in the interim 
between initial experience and recollection. For example, Piaget (1968a) presented experimental 

 
1 Glasersfeld (1991) distinguished between “to represent” and “to re-present” this way. To represent an experience is 
to take one thing as standing for another. To re-present an experience is to bring to mind a record of the experience. 
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evidence of children’s memories of a visual image improving over time. The improvement, 
Piaget claimed, was due to students having developed more coherent schemes by which they 
remembered (re-constructed) their original perception. The experiment had first-grade children 
look for a short period of time at a display of 10 bars aligned vertically in ascending length 
(Figure 1a). Piaget and colleagues asked children to draw what they remembered seeing one 
week later and six months later. Children’s drawings one week later tended to show local groups 
of ascension, but not uniform increase in length (Figure 1b). Their drawings six months later, 
with no mention of the initial episode having been made, were considerably improved—many 
more children’s drawings resembled the figure presented six months earlier. Piaget explained 
that, in the intervening six months, children had developed schemes for order that included 
transitivity.2 In other words, their recollections improved because the schemes by which they re-
presented their initial experience of the bars had become more advanced.  

 
Figure 1. (a) The figure as presented to children. (b) Type of drawing common among children 

one week later. 

 Another source for our position regarding imagery is our appreciation of action as the 
foundation of Piaget’s genetic epistemology. To Piaget, actions were cognitive activity that 
might (or not) be expressed in behavior. "One can say that all action—that is to say all 
movement, all thought, or all emotion—responds to a need" (Piaget, 1968b, p. 6). Actions are the 
foundation of experience, so the phrase “recall an experience”, to be in line with Piaget’s genetic 
epistemology, forces us to include recalled movement, thought, or emotion as imagery. 
 We also avoid tacitly equating “action” with observable behavior, which happens often 
when people use the phrase “reflection on activity”. Powers (1973a) addressed this when he 
explained that living organisms cannot organize themselves around how their behavior is 
perceived by others, but instead according to effects of the organism’s actions as discerned by 
the organism (Powers, 1973b, p. 418). 

Powers’ message for us is that we cannot take students’ behavior at face value—it is but 
an expression of their actions—where we use “action” as Piaget intended. This is at the root of 
Steffe and Thompson’s (2000) distinction between students’ mathematics (their mathematical 
realities) and mathematics of students—an observer’s understanding of how students might be 
thinking to behave as they did or might do. Students’ mathematics is the dark matter and dark 
energy of mathematics education. Devising a viable mathematics of students is therefore a core 

 
2 One way Piaget inferred that children’s ordering schemes included transitivity was to have them insert a stick into 
a series they had constructed, ordered left-to-right ascending by height. If the child found the first stick taller than 
the one they were to insert and inserted the new stick to the left of the first-taller stick, the child exhibited 
transitivity. They knew all sticks to the left of that position were necessarily shorter than the one they inserted and 
all sticks to the right were necessarily taller than the one they inserted (Piaget, 1965). 
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mission of mathematics education research. Understanding students’ imagery while engaged in 
instruction and while recalling their experiences outside of instruction is central to that mission. 
 On a related note, it is common for instructors and instructional designers to include 
visual presentations to supplement prose or have students engage in some form of activity. The 
thought is that activities or visual presentations help students understand the goal of instruction. 
Our emphasis on imagery as recalled experience is important for putting these efforts in proper 
light. By taking seriously the stance that imagery is rooted in recalled experience, we are forced 
to be mindful that students recall their experience of activities or visual presentations; they 
cannot recall what we understand as having been presented to them. Students’ experience of an 
activity or presentation is conditioned by the schemes through which they understood it and 
recall it. Since learners are, by definition, new to the ideas being taught, their experience of 
activities or presentations will be substantially different from the originator’s intentions.  

Imagery, Schemes, and Meanings 

Having spoken of schemes in relation to images repeatedly we feel obliged to say what we mean 
by a scheme and speak to the role of imagery in scheme development.  
 Piaget’s use of “scheme” was quite utilitarian. It allowed him to speak of mental 
organizations that supported flexible reasoning across seemingly disparate situations. 
Montangero and Maurice-Naville (1997, p. 155) presented a compendium of six ways Piaget 
used “scheme”. They ranged from “[Schemes are] organized totalities whose internal elements 
are mutually implied” (Piaget, 1936, p. 445) to “A scheme is the structure or the organization of 
actions which is transferred or generalized when this action is repeated in similar or analogous 
circumstances” (Piaget & Inhelder, 1966, p. 11, footnote not translated in the English version).  

Piaget’s statement, “organized totalities whose internal elements are mutually implied” 
derives from his stance that actions are implicative. When someone engages in an action, it 
creates a new experiential context that could be the trigger for other actions. An action in a 
context implies other actions. Thus, “… elements are mutually implied” means that a scheme 
constitutes a locally closed system in which any of its assumed conditions could activate the 
scheme in its totality. An example is when someone has a mature constant speed scheme. They 
are aware that a time and a speed are involved when they know an object traveled some distance, 
that a distance and a speed are involved when they know it traveled some time, and that a time 
and a distance are involved when they know it traveled at some speed. “Mutual implications” of 
time, distance, and speed in a person’s constant speed scheme is evidenced when they understand 
that there are implied distances in “A car drove 60 mi/hr for 3 hours and then 40 mi/hr for 5 
hours. What was the car’s average speed?”  

Likewise, the statement, “… organization of actions which is transferred when this action 
is repeated …” was Piaget’s way to account for how a scheme (as an organization of actions) can 
be activated in seemingly different circumstances. An example of this is when someone uses 
their constant speed scheme (constant rate of change of distance with respect to time) to 
understand constant rate of change of volume of a fluid in a container with respect to its height in 
the container. 
 Cobb and Glasersfeld (1984) and Glasersfeld (1995, 2001) proposed that, to Piaget, a 
scheme was a three-part mental structure: an internal condition that would trigger a scheme, an 
action or system of actions, and an anticipation of what the action would produce. Steffe (2010) 
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expanded Cobb and Glasersfeld’s definition to include a scheme’s goal (Figure 2). Steffe’s 
motivation for including a generated goal in his definition of scheme was  
 

The Generated Goal can be regarded as the apex of a tetrahedron. The 
vertices of the base of the tetrahedron constitute the three components of 
a scheme. The double arrows linking the three components are to be 
interpreted as meaning that it is possible for any one of them to be in 
some way compared or related to either of the two others. The dashed 
arrow is to be interpreted as an expectation of the scheme’s result. 
(Steffe, 2010, p. 23) 

 
Figure 2. Steffe’s (2010, p. 23) characterization of schemes. 

 A main feature Piaget communicated in his characterizations of scheme is they are 
cognitive structures that can express themselves in action or behavior. Cobb’s, Glasersfeld’s, and 
Steffe’s definitions address Piaget’s intention well. However, another important aspect of 
schemes’ functioning to Piaget, not captured by those definitions, is that people employ schemes 
to comprehend situations, to give meaning to situations (Piaget & Garcia, 1991). To us, a 
definition of scheme must support interpretations of a person’s attempt to understand situations 
in terms of meanings they have for constituent elements and relationships among them. 
Thompson and Saldanha (2003), for example, spoke of a mature fraction scheme as a network of 
relationships among schemes for measure, multiplication, division, and relative size, each of 
which entails aspects of proportionality, as a means to understand the broad array of situations 
one can understand as involving fractions.  

To this end, Thompson, Carlson, Byerley, and Hatfield (2014) expanded Steffe’s, 
Cobb’s, and Glasersfeld’s definitions of scheme.  
 

A scheme as an organization of actions, operations, images, or 
schemes—which can have many entry points that trigger action—and 
anticipations of outcomes of the organization’s activity.3 (Thompson et 
al., 2014, p. 11) 

 
We point out that, in this definition, “entry points” often are images of contexts and 

anticipated outcomes are most definitely images. Unlike Steffe’s definition, and like 
Glasersfeld’s and Cobb’s, Thompson et al.’s (2014) definition of scheme does not include goals. 
In a larger context, though, it is like Steffe’s definition in that a person can generate a goal in the 

 
3 This definition is recursive, not circular. A scheme might recruit other schemes when activated. 
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activity of implementing a scheme or might activate a scheme because a generated goal matches 
a scheme’s anticipated outcome. 
 Thompson et al.’s definition of scheme is at the root of Thompson and Harel’s (Harel, 
2021; Thompson et al., 2014) attempt to give coherence among meanings for understandings, 
meanings, and ways of thinking (Figure 3). 
 

 
Figure 3. Meanings of “understanding”, “meaning”, and “way of thinking” (Thompson et al., 
2014, p. 13) 

 This system for the use of “understanding”, “meaning” and “way of thinking” aligns with 
Harel’s and Thompson’s quest to decouple “understand” and “understand correctly”. They do 
this by resting their system on the idea of assimilation. They rely on Piaget’s characterization of 
assimilation as, in effect, giving meaning.  

Assimilating an object to a scheme involves giving one or several 
meanings to this object, and it is this conferring of meanings that implies 
a more or less complete system of inferences, even when it is simply a 
question of verifying a fact. In short, we could say that an assimilation is 
an association accompanied by inference. (Johnckheere et al., 1958, p. 
59) as translated by (Montangero & Maurice-Naville, 1997, p. 72)  

 Figure 3’s first entry (Understanding in the moment) describes a person who has an 
understanding of something said, written, or done in the moment of understanding it. 
Technically, all understandings are understandings-in-the-moment. Some understandings might 
be a state that the person has struggled to attain at that moment through functional 
accommodations to existing schemes (Steffe, 1991), and is easily lost once the person’s attention 
moves on. This type of understanding is typical when a person is making sense of an idea for the 
first time.  
 The meaning of an understanding is the space of implications that the current 
understanding mobilizes—actions or schemes that the current understanding implies, that the 
current understanding brings to mind with little effort. An understanding is stable if it is the 
result of an assimilation to a scheme. A scheme, being stable, then constitutes the space of 
implications resulting from the person’s assimilation of anything to it. The scheme is the 
meaning of the understanding that the person constructs in the moment. As an aside, schemes 
provide the “way” in Harel’s “way of understanding”. Finally, Harel and Thompson characterize 
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“way of thinking” as when a person has developed a pattern for utilizing specific meanings or 
ways of thinking in reasoning about particular ideas or situations.  

Images and Schemes 
Images enter our definition of scheme, and therefore meaning, in three ways: Images can be 
contexts that activate a scheme, they can be waypoints in a scheme’s activity, and they can be 
anticipations of a scheme’s result within the context of the scheme’s activation. 
 Thompson (1994a, 1996) explained the ways in which the notion of image is intertwined 
with Piaget’s concept of scheme. He pointed out three levels of imagery in Piaget’s work. The 
first level of imagery is when a child engages in deferred imitation. Deferred imitation is when a 
child enacts the imitated behavior to assimilate (understand) it. The second level of imagery 
(figurative) is an image of an initial state and actions that are associated with it, but the actions 
and image are tied tightly—such as a student accustomed to drawing altitudes in a triangle with 
all angles less than 90 degrees being confused when asked to draw all altitudes in a triangle with 
one angle greater than 90 degrees.  
 The third level of imagery is what Piaget called “operative”. 
 

[This is an image] that is dynamic and mobile in character … entirely 
concerned with the transformations of the object. … [The image] is no 
longer a necessary aid to thought, for the actions which it represents are 
henceforth independent of their physical realization and consist only of 
transformations grouped in free, transitive and reversible combination … 
In short, the image is now no more than a symbol of an operation, an 
imitative symbol like its precursors, but one which is constantly outpaced 
by the dynamics of the transformations. Its sole function is now to 
express certain momentary states occurring in the course of such 
transformations by way of references or symbolic allusions. (Piaget, 
1967, p. 296) 

 The three levels of imagery do not differ in type. They are all re-presented experiences. 
Instead, the levels are differentiated by the ways images are integrated into individuals’ 
reasoning and the types of reasoning into which they are integrated. We unpack the three levels 
in the following paragraphs. 

First-level imagery (deferred imitation) 
Piaget’s examples of deferred imitation are often about infants or toddlers mimicking their 
experience of others (e.g., opening their mouth to mimic their mother) or engaging in play to 
mimic social interactions. But deferred imitation is a broader phenomenon. In psychotherapy it is 
called re-experiencing (Joseph & Williams, 2005)—the replaying of a traumatic event to 
assimilate (understand) it by either adjusting one’s understanding of a world in which such a 
thing could occur or adjusting one’s understanding of one’s place in the world that makes the 
event sensible. The role of deferred imitation in mathematics learning is unclear to us. This is not 
to claim it is unimportant. We just say we are unclear as to its role. 

Second-level (figurative) imagery 
Second-level (figurative) imagery aligns with what Davis, Jockush, and McKnight (1978) called 
“visually-moderated sequences”—activity sequences triggered by a current visual or cognitive 
state (e.g., seeing an equation and thinking to add something to both sides) that end in a new 
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visual or cognitive state (e.g., an expression with no constant terms) that triggers another activity 
sequence (e.g., dividing both sides by the same number). Each activity sequence results in a new 
state, but upon arriving at a new state it is simply the end of the activity sequence. It is not a goal 
toward which the student strove and thus the end state is not an anticipated result of the activity, 
and the actual result does not, to the student, entail an image of the activity leading to it.  

Frank (2017) provided an excellent example of a student whose activity ends with a result 
that, for her, did not entail an image of the activity that led to it. The student (Ali) constructed a 
graph to represent two quantities’ values as they varied simultaneously in an animation of the 
quantities and their magnitudes. Ali ended with what Frank considered an appropriate graph. But 
the graph, to Ali, did not entail the covariational reasoning in which she engaged while making 
it. Ali spoke of the graph which she had just made as if it was a static shape, as if a piece of wire. 

At the outset of this study, I thought that if Ali made a graph by 
simultaneously tracking two magnitudes, then she engaged in emergent 
shape thinking. I had not considered that Ali’s meaning for her sketched 
graph might not reflect the thinking she engaged in to make the graph. 
(Frank, 2017, p. 193) 

Research by Lobato, Stump, and Moore provide additional examples of students 
operating with figurative imagery. Lobato and Thanheiser (2002) reported children thinking the 
slope of a ramp leading to a platform is affected by the width of the platform. They included the 
platform as part of the “over” image in their “up and over” slope scheme. Stump (2001) reported 
a student who thought a slope of  is different than a slope of  because they entail 
different images of “up and over”. Moore and colleagues (Moore et al., 2014, 2019) reported 
students becoming confused about the slope of a line when x- and y-axes were switched. They 
wanted the line to have the same slope because, to them, the line still pointed in the same 
direction. Their slope scheme depended on an image of a lines’ direction and a slope value, to 
them, was an index of directionality. 

Anyone operating with figurative imagery can lose track of their reasoning easily. 
Byerley and Thompson (2017) report several instances of teachers moving from one meaning of 
a situation to a contrary meaning within seconds as they employed schemes which used images 
figuratively. Figure 4 presents an item from the Mathematical Meanings for Teaching secondary 
mathematics (MMTsm) inventory (Thompson, 2016). Its design was motivated by the ambiguity 
with which teachers in their samples used the word “over” when speaking of rates of change. 
Thompson and his team could not tell whether teachers used “over” to convey an interval during 
which an event unfolded or to convey a spatial arrangement of numerator and denominator with 
respect to a vinculum.  

 
Figure 4. Meaning of "over" (Byerley & Thompson, 2017). © 2014 Arizona Board of Regents. 
Used with permission. 

−5/6 5/−6
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 For this item, the team took “during” to be a high-level answer to Part A and 
, , or even ∆m = 4 to be a high-level 

answer to Part B. Byerley and Thompson reported 113 (45%) of 251 U.S. teachers said “over” 
meant during or something equivalent in response to Part A, and 71 (28%) of 251 teachers said 
“over” meant the same as divide in response to Part A. In response to Part B, only 18 (16%) of 
the 113 teachers who said “over” meant “during” for Part A represented the statement as a 
difference or change in mass. Forty-one percent (41%) of the 113 teachers who said “over” 
meant during for Part A responded to Part B by representing the statement as a quotient 
involving mass and time, writing something like (change in mass)/(change in time) = 4 grams. In 
other words, when reading the statement as a plain-language description of a situation, the word 
“over” for these 113 teachers suggested an image of something happening in time. But upon 
reading the same statement as something to be represented symbolically, the word “over” 
suggested an image of numerator and denominator separated by a vinculum. 
 An interview with James, who had a B.Sc. in mathematics education and was an 
experienced teacher of algebra, geometry, and precalculus, illustrates how figurative imagery 
leads to conflicts between schemes. 

 
James: [Over means] during or duration. You could also think of it as a ratio, so change in 

mass over, yeah so during or duration, so in your math class when they say, “something 
over something”, they always mean a divide sign so a ratio. 

Int: Do you think they are both saying the same thing?  
James: Well, yeah, I think that. Well yeah, they are saying. I think the during or duration is 

more saying conceptually what is going on, and the divided by or over I see the reason 
behind that, I think I’m more pointing out mathematically what we mean when we say 
over with no explanations as to why, it is just the way it is.  

Int: So is the mass, the change in mass divided by the change in time, is that how you write 
the idea of duration? 

James: Can you repeat the question?  
Int: Is the “delta mass divided by delta x” a mathematical way of saying duration?  
James: I want to say the change in x is the way of saying duration. I want to say the change in 

x is representing duration. But maybe we could include the division sign. So no, I 
would not say that “delta mass over delta x” is a way of saying duration. So this is 
funny. (Byerley & Thompson, 2017, pp. 188-189) 

 James never reconciled his conflict between “over” suggesting ∆x as a representation of 
elapsed time and “over” suggesting the quotient ∆m/∆x. We explain his conflict by appealing to 
the imagery he apparently evoked in relation to his different purposes for reading the statement. 
In Part A, his purpose was to read the statement as a plain-language description of a 
phenomenon, for which “over” suggested an image of something happening as time elapsed. In 
Part B, James’ purpose was to represent mathematically a situation described in plain language, 
which suggested an image of two numbers or expressions separated by a vinculum. What was 
new for James is that the interviewer asked him to compare competing implications of his two 
assimilations of the same word. The images James evoked were figurative—they were tied 
tightly to the schemes he evoked in the contexts of his different purposes. 
 We present a second example from Byerley and Thompson (2017) of figurative imagery 
leading to competing assimilations of “the same” context. Figure 5 shows another item from the 
MMTsm. Its purpose was to tease out whether teachers interpreted graphs as showing amounts 

f (x0 + Δx) − f (x0) = 4 grams f (x + Δx) − f (x) = 4 grams
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of a quantity despite it being stated explicitly in two ways that the graph showed rates of change 
of one quantity with respect to another. Parts 2 and 3 to this item (not shown here) allowed 
teachers to reveal their level of commitment to their initial interpretations of the graph. Thirty-six 
percent (36%) of 239 high school mathematics teachers appropriately chose (c) for Part 1 of this 
item; 49% chose (a). 
 

 
Figure 5. Part 1 of 3-part item “Increasing or decreasing from rate” (Byerley & Thompson, 
2017). © 2014 Arizona Board of Regents. Used with permission. 

 The following excerpt shows a teacher who slipped from one interpretation of the item to 
a contrary interpretation while explaining her answer to the question. 
Annie: [Reads problem aloud, emphasizes “grams per hour”.] We interpret increasing. 

umm...let’s see the function gives the rate of change in grams per hour... and so 
umm...what we are going to look at I would look at the rate of change being positive or 
negative, if we have a positive rate of change the grams per hour the mass is increasing 
per hour, is getting larger 

Annie: So I look at where I have a positive rate of change, and I try to identify where I have no 
rate of change [highlights maximum at (1.25, 5) where the rate of change is 
approximately positive 5, but the acceleration is zero], this is telling me where the mass 
is staying the same, and then I have a negative slope so mass is getting small down to a 
zero rate of change so I’m not getting any smaller or larger... [Annie chooses (a)] 

 We do not have direct evidence of where Annie looked as she spoke, but it seems 
plausible she gazed at the text during her first utterances and gazed at the graph during her 
second utterances. It appears that in the first utterances Annie had in mind values of the function 
f as values of the rate of change of the culture’s mass with respect to elapsed time, whereas in the 
second utterances Annie had in mind slopes of tangents to the graph as values of the rate of 
change of the culture’s mass with respect to elapsed time. In other words, Annie slipped from 
one scheme (values of the function give the rate of change) to a different scheme (slope of 
tangents to the graph gave the rate of change), and the “slip” was prompted by her different 
imagistic contexts (text vs. graph). For Annie, with rate of change functions, values of the 
function give rates of change; with graphs, slopes of tangents give rates of change. We note in 
passing that Annie felt no conflict between her two schemes because she did not think of the 
function having positive values in places where its graph had negative slopes. 

Third-level (operative) imagery 
 At the third level of imagery, students’ schemes are not dependent upon specific images. 
Instead, images serve as arbitrary “momentary states” in a scheme’s implementation. Thompson 
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and Dreyfus (1988) reported two sixth graders’ (Kim’s and Lucy’s) advancing from second-level 
imagery, thinking of an integer such as -5 as a location on a number line and later thinking of -5 
as a displacement from any starting point. Their imagery moved from Piaget’s second level to his 
third level. The children’s schemes no longer needed a definite starting point. They knew they 
could start anywhere to enact -5. They could then think of +3 + -5 as a composition of two 
displacements that produced a net displacement of -2, where the second displacement started 
wherever the first ended. Though they enacted the displacement of +3 from a specific place on a 
number line, they did not feel required to use a specific place from which they must enact it. 
Their image of an actual starting place was not more general. Rather, it was their scheme that 
became more general. It did not require a specific starting place, thus specific locations on the 
number line served as “momentary states” in the activity of their integer composition schemes as 
they conceptualized the net displacement (sum) of several displacements.  

While Kim and Lucy developed operative imagery regarding composition of 
displacements, only Kim thought of number in –number as itself being a net displacement. 
Understanding expressions like  was unproblematic for Kim because the expression 

 fit within her image of things constituting number—it was a net displacement. For 
Lucy, only whole numbers fit her image of things constituting number. Evaluating the negation 
of complex expressions was often effortful for Kim, but she nevertheless knew what she was 
supposed to end with—the negation of a net displacement. In sum, Kim and Lucy had operative 
imagery with respect to composition of displacements while only Kim had developed operative 
imagery for negation. Our main point here is that you categorize the level of students’ images as 
second-level (figurative) or third-level (operative) according to your judgment of how necessary 
those specific images are in students’ schemes as they employ them. 

Summary 
 The examples above show our use of “image-level” relatively. Deferred imitation can 
happen when anyone re-plays an event or collection of actions which they did not fully 
assimilate—they did not fully understand. Young children go home from school and play school 
as an attempt to assimilate their new experience of a teacher who attempts to control their 
thinking. Graduate students in mathematics replay specific aspects of a lecture in their attempt to 
assimilate them—to develop an understanding. Movement of an hour hand on a circular clock is 
often offered as a foundational image for understanding cyclical groups. For persons who must 
think of a clock to do arithmetic in a cyclical group, their clock image is figurative because their 
scheme for addition in a cyclical group requires it. A person who uses a clock whose hour hand 
varies from 0 to 2π hours to think of equivalent angle measures on a number line, but can also 
see the repetition as hops on the number line or as the number line collapsing into equivalence 
classes by the mapping ,4 is employing images operatively. Any image they employ in 
their reasoning about arguments to a trigonometric function is a matter of convenience because it 
fits their purpose in the moment. 
 Piaget’s notion of image is useful because, in developing a scheme, a student must reflect 
on her reasoning. To reflect on her reasoning, she must create, as best she can, images of having 
reasoned in the way she did. This means she must develop recollections of “momentary states” in 
having reasoned. To construct a scheme, students must repetitively engage in variations of the 

 
4 The mapping  maps every real number x to the non-negative remainder of x divided by 2π, or 

. Think of all numbers on the number line falling simultaneously, like molecules of water 
vapor, onto their equivalent positions in the interval [0,2π). 

−(−90 + 30)
(−90 + 30)

ℝ → ℝ /2π

ℝ → ℝ /2π
x → x − 2π floor(x /2π)



Thompson, Byerley, & O’Bryan Imagery et al. 

Draft Version 2 July 30, 2022 
-11- 

reasoning that will become solidified in that scheme and re-present it as best they can to reflect 
upon it. Sometimes reflection occurs during moments of confusion, sometimes after having 
engaged in a chain of interpretations, inferences, and decisions. Nevertheless, in the process of 
constructing a scheme, images of having reasoned become students’ objects of reflection 
(Cooper, 1991; Harel, 2008a, 2008b, 2013). 
 It is worth noting that the number of schemes students develop is immense. Any word 
that is meaningful to them is meaningful because hearing or seeing it activates a scheme. Any 
symbol or symbolic expression that is meaningful to them is meaningful because seeing it or 
thinking of it activates a scheme. Any diagram or picture that is meaningful to them is 
meaningful because they assimilate it to one or more schemes. Any time you assess students’ 
thinking or interview students they are interpreting both the setting and your actions through the 
activation of schemes. Moreover, any combination of the above that proves meaningful to a 
student is meaningful because of minor or major accommodations in their schemes in the 
moments of activating them. Any time someone puzzles about the meaning of a word or phrase 
and resolves their puzzlement has engaged in some form of reflection that engendered an 
accommodation to their schemes. When you create a scheme as a model of student thinking and 
impute that scheme to students, you must be cognizant that you have most certainly omitted a 
vast number of schemes that were at play in students’ thinking that might turn out to be 
important for understanding their thinking. The art of using scheme and image as explanatory 
constructs is to find the appropriate level of analysis that produces tractable explanations of 
students’ successes and difficulties. 
 The prior paragraph points to a methodological aspect of scheme as a theoretical 
construct. On one hand, we say schemes are organizations of a person’s mental activity that 
express themselves in what an observer sees as behavior. From this perspective, schemes reside 
in individuals. On another hand, we say scheme is a theoretical construct that researchers impute 
to individuals to explain their behavior. They are a researcher’s construct. This is much like 
stances taken by natural scientists. They realize anything they say is based on models built from 
theory-laden observations, but in doing their science they act as if their models describe reality—
until observations force them to step back and question their assumptions and their models. 
Likewise, we infer schemes from students’ behavior in response to carefully defined probes. We 
impute schemes to students to form explanations of their behavior and to design supports we 
think will advance their thinking. We step back and question ourselves when our explanations 
become inconsistent or inadequate, or our designed supports do not have their intended effects. 

Imagery, Schemes, and Reflective Abstraction 

In this section we expand our earlier discussion of imagery, schemes, and meanings to address 
what we mean by reflection and the role it plays in a person’s construction of schemes.  
 John Dewey placed reflection at the center of his understanding of thinking, and placed 
thinking at the center of the development of a critically informed democracy. Dewey defined 
reflective thought as, “Active, persistent, and careful consideration of any belief or supposed 
form of knowledge in the light of grounds that support it, and the further conclusions to which it 
tends” (Dewey, 1910, p. 6). Dewey also anticipated coherence as a characteristic of reflective 
thought that Piaget came to see as central to his genetic epistemology. Reflection on one’s 
thinking leads to 
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the organization of facts and conditions which, just as they stand, are 
isolated, fragmentary, and discrepant, the organization being effected 
through the introduction of connecting links, or middle terms” (Dewey, 
1910, p. 79). 

 
Dewey was also in line with Piaget as to one’s motive for reflection. 
 

Demand for the solution of a perplexity is the steadying and guiding 
factor in the entire process of reflection – i.e., reflection serves a 
regulatory function (Dewey, 1910, p. 11). 
 

 The key aspect of Dewey’s account of reflection is that “to reflect” means to think about 
thinking. This is in line with our prior discussions of imagery with respect to schemes when one 
considers that people construct schemes by creating images of having reasoned and take those 
images as their objects of thought. 
 A vast difference between Dewey’s and Piaget’s accounts of reflection is that Dewey 
thought of reflection as a conscious activity whereas Piaget thought of conscious reflection as the 
tip of an iceberg. He posited processes of unconscious reflection that must precede anything 
resembling Dewey’s characterization. Piaget took the stance that one can be aware only of 
images one operates upon. You cannot be aware of the operations you use to operate on an 
image—to an extent. You can, however, project your operations of thought to a level where they 
become images upon which you operate. But that is different from being aware of the operations 
of thought you employ while using them. 
 As explained by Ellis et al. (this volume) and Tallman and O’Bryan (this volume), the 
idea of reflection, or thinking about one’s thinking, has been on philosophers’ minds at least 
since the time of Aristotle. They also explain that Piaget was the first to break the notion of 
reflection down into constituent cognitive processes. We will not add to their extensive 
discussions. Instead, we will highlight essential aspects of reflective abstraction to complete our 
picture of how imagery and schemes (and therefore meanings) develop and interact in students’ 
thinking across their mathematical development. 
 Piaget posited five types of abstractive processes: empirical, pseudo-empirical, reflecting, 
meta, and thematizing 

Empirical abstraction is the process of extracting common properties of sensory 
experience. To empirically abstract a property the person comes to distinguish between objects 
having and not having the property. It is important to understand that “the property” is the 
person’s construction, not a “real” property. A child abstracting the property of having four legs 
to apply the word “dog” might at first might also apply “dog” to what we call cats. 
 Pseudo-empirical abstraction is the process of taking the results of one’s activity as 
objects of empirical abstraction. For example, a child constructed the sequence of arrays in 
Figure 6. Her actions were to make a vertical line of dots one more than was already there and 
then complete the figure by making the same number of horizontal dots as in the current array. 
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Figure 6. A child’s construction of a sequence of arrays. 

When the child was asked about the number of dots in each array, she noticed that each array 
was a square, so she said “1, 4, 9, 16, 25”. When asked how many would be in the next array, she 
squared six to say “thirty-six”. In other words, when asked about the number of dots in each 
array, she took the arrays as if given to her. Here reasoning did not reflect that, by her 
construction method, the sixth square would have  dots, or that the (n+1)st array would 
have  dots, which she could then connect to her observation that each array is a 
square to conclude that . This is not to diminish the child’s 
accomplishment. Instead, it is to point out the difference between abstracting one’s reasoning 
from the activity of producing the sequence and abstracting an empirical pattern from the 
products of one’s reasoning. 
 Reflecting abstraction was already exemplified in the example of pseudo-empirical 
abstraction. A person engages in reflecting abstraction when she brings to mind (re-presents), as 
best she can, the reasoning in which she engaged in a prior occasion. A successful process of 
reflecting abstraction produces a new action, but one that does not need the specific contexts 
accompanying the original. Successful reflecting abstractions produce reflected abstractions. 
 Metareflection and Thematization are constructs Piaget introduced to account for the 
ever-increasing level of persons’ abstraction of logical, mathematical, and scientific structures. 
He posited that reflecting abstraction produces reflected abstractions which then can themselves 
become objects of reflection. He used “metareflection” to capture a person reflecting on reflected 
abstractions (Piaget, 2001, pp. 82–84). 
 A person thematizes a scheme via metareflection by developing an image of its major 
elements, how they work together, and how they might unfold in the context of actual situations. 
This is not unlike the way storytellers thematize a story. They come to think of the story’s major 
elements, how they work together, and how each element might be unpacked into its details. As 
Harel (2008c, 2013, 2021) explains, thematization of a scheme evolves over repeated occasions 
of employing the scheme and reflecting on the activity of employing it. Depending on the 
scheme’s complexity, this could happen over many years. It is worth noticing that when a 
scheme is well-formed at a reflected level, one can have the experience of having implemented 
that scheme. Thus, the processes of metareflection and thematization can operate on images of 
schemes as well as on images of schemes’ constituent elements. 
 Dawkins and Norton (2022) draw upon the construct of metareflection (reflecting on 
reflected abstractions) to account for students’ development of universally quantified conditional 
statements as logical structures. “We propose populating, inferring, expanding, and negating as 
four mental actions that, upon becoming reversible and composable, can give rise to the logic of 
universally quantified conditional statements. We adopt the view that logic is a metacognitive 
activity in which people abstract content-general relationships by reflecting across their content-
specific reasoning activity.” (Dawkins & Norton, 2022, p. 1). 

52 + 6 + 5
n2 + (n + 1) + n

(n + 1)2 = n2 + (n + 1) + n
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 We (the authors) had the experience of a calculus student sharing with us her 
thematization of an approximate accumulation function in DIRACC calculus (Thompson et al., 
2019). We were in a staff meeting; the conference room door was open and the statements in 
Figure 7 were written on a whiteboard visible from the hallway.  
 

 
Figure 7. Statements defining an approximate accumulation function in DIRACC calculus. 

The student stepped into the room, pointed at the board, and proudly announced, 
 

I can tell you what every line on that board means and how it all works 
together! You have a function that gives the rate of change of 
accumulation for every value of x. You want to approximate the 
accumulation from a to x, so you cut up the x-axis into parts all of length 
∆x starting from a and define a function so its value for everything in a 
∆x interval is the accumulation’s rate of change at the beginning of that 
interval. Then you assume the accumulation happens at that constant rate 
over the whole ∆x interval. You do that for all complete ∆x intervals from 
a to x, and then you add the accumulation through the partial interval 
from left(x) to x. That’s how a value of A(x) gives an approximate 
accumulation from a to x. 
 

 While the student omitted some details, such as how the definition of left(x) works the 
way she said and how the summation in the last line gives the accumulation she claimed, she 
accomplished essentially what she set out to do. She explained each element in her approximate 
accumulation scheme and how they worked together to produce an approximate accumulation 
from a to x for every value of x when all one knows is the accumulation’s rate of change at every 
moment. 
 It is our experience that metareflection and thematization are the least emphasized of all 
the forms of reflection in Piaget’s genetic epistemology—in both instruction and in research. In 
instruction, we do not envision a teacher commanding his students to metareflect or to thematize. 
Rather, a teacher could promote metareflection and thematization by emphasizing schemes’ 
stories. While the teacher’s students must thematize their own schemes, the teacher emphasizing 
the story of a scheme can open students to the possibility that there is a story to understand. In 
research, it is inherently difficult to investigate metareflection and thematization as explanatory 
constructs or as phenomena to investigate, for two reasons. First, these are processes that, even if 
a student engages in them, occur largely outside of instruction, perhaps even in their sleep, 
during what Hadamard (1954) called periods of “incubation” and during periods of what Steffe 
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(1991) called “metamorphic accommodation”—accommodations to schemes that persist over 
situations and time. Second, metareflection and thematization are difficult to investigate 
methodologically. Tallman and O’Bryan (this volume) suggest an approach to engendering 
metareflection in which researchers engage students in what appear to the students as very 
different situations, but which nevertheless can be understood as similar at a reflected level. 
Thompson (1994b) used essentially this approach with some success to investigate a fifth 
grader’s construction of a reflected constant rate of change scheme. Research on metareflection 
and thematization will be a fruitful area for future advances in theory and practice. 

Case Studies 

We provide two case studies to illustrate the interconnections among imagery, schemes, 
meanings, and reflective abstraction. The first case is a 7th-grader learning a mathematical game. 
It will illustrate a youngster's construction of schemes regarding the game and the crucial role his 
imagery played in developing them. The second case is of an adult who reasons initially at a 
figural level about a mathematical task and who projects the situation to a level of existing 
reflected abstractions upon becoming confused by an unexpected outcome. 

Imagery in the Construction of a Nim Scheme 
According to Jorgensen (2009), Nim is one of the oldest games in the world. It is a game for two 
players. In one version, they start with the target number 21 and current total of zero. Players 
take turns adding a number from one to three to the current total. The player ending with 21 
wins.  
 Diego was a 12-year-old rising seventh grader. We asked him and his parents to let us 
teach him Nim and allow us to record our Zoom sessions. They agreed. Diego played against a 
computer program which embedded a general winning strategy that enabled it to win whenever 
the opportunity arose. Diego played against two versions of the program: (1) A fixed target of 21 
and selecting numbers from 1 to 3. He could choose which player goes first. (2) An arbitrary 
target and arbitrary range of numbers from which to choose. Diego could choose the numbers 
and which player goes first. Sessions were conducted using Zoom. We met for two sessions—
June 17 and 28, 2020. The long break was when Diego attended surf camp. 
 We report these sessions to highlight the central role of imagery in Diego’s construction 
of a general Nim scheme by way of the gamut of reflective processes. Diego’s early imagery was 
figurative, based on re-presenting states of his play. He focused on moves he might make based 
on the game’s current state. He refined his strategy eventually by taking his reasoning as his 
object of thought as opposed to states of the game as his objects of thought. His re-presentations 
of prior reasoning became the images upon which he operated 
 
Session 1: June 17, 2020 
 21 and 3  
Pat explained the game’s rules to Diego and explained that Diego would be playing against a 
computer program. Pat shared his screen to show the program, which itself explained the game 
and gave an example (Figure 8). 
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Figure 8. The computer screen in a game of Nim. 

 Diego said he would go first. He chose numbers from one to three at random. When the 
computer played to reach a total of 17, Diego paused. After a few seconds he said, “I lost. No 
matter what I choose, the computer will get to 21.” 
 In the second game Diego went first, again choosing numbers at random. Diego paused 
when the computer played to reach 13. “Darn, I’m going to lose again.” He remembered that the 
computer reaching 17 led to it winning, and he couldn’t stop the computer from reaching 17. 
 In the third game, Diego developed the strategy of “goal numbers”. 
 
Excerpt 1. 
Diego: To get to 21 I have to get to 17. To get to 17 I have to get to 13. To get to 13 I have to 

get to … nine. To get to nine I have to get to … five. To get to five I have to get to one. 
To get to one I have to go first. 

 
Diego’s image of his participation in the first two games was simply to select numbers from one 
to three and add his selection to the current total. We say he operated with figurative imagery 
because each of his activities (adding a new number) resulted in a new state (a new total number) 
but the new total number was simply the end of an activity sequence (his turn). He was not 
striving for a particular goal and when he considered a new total number his thinking did not 
entail an image of the reasoning he used to get to it. He reasoned about specific numbers in 
specific contexts but not yet re-enacting his reasoning to reflect on it. 
 Diego’s scheme for Nim-21 developed as he reflected on being “blocked”. In the first 
game, he experienced being “blocked” from reaching a desired number (21) because of the total 
the computer gave him (17). He concluded, by trying all possibilities, he could not reach 21; the 
computer would win regardless of his choice of number when he is given 17. In the second 
game, Diego had a similar experience of being “blocked” when the computer presented him with 
13—he saw that the computer would reach 17 regardless of his choice and it would therefore win 
for the same reason he experienced before. In the third game Diego employed his image of being 
“blocked” to devise a strategy in which he could block the computer from reaching a desired 
goal number. Diego employed his “blocking” image to block the computer from reaching 21 by 
him reaching 17, then blocking the computer from reaching 17 by him reaching 13, and so on. 
Diego’s images of being blocked were at first dependent on thinking about the computer 
reaching 17 and the possible moves he could make from 17 to 21. As Diego repeatedly reasoned 



Thompson, Byerley, & O’Bryan Imagery et al. 

Draft Version 2 July 30, 2022 
-17- 

about being blocked and additional blocking numbers his image became less dependent on 
specific game states. As Diego’s blocking number scheme became more stable and less 
dependent on specific states of the game his imagery of being blocked moved from figurative to 
operative. It became less necessary for Diego to consider a specific game state when he reflected 
on being blocked. We say that Diego developed a blocking number scheme to determine goal 
numbers and used his goal numbers to ensure he won. He coordinated his blocking number 
scheme and list of goal numbers in playing the game. Diego had developed a Nim-21 scheme. 

 38 and 8 
Pat then ran a program that played Nim with arbitrary target and range numbers, suggesting they 
change target and range. Diego chose 38 as target and 1-8 as range. Diego applied his blocking 
scheme to determine goal numbers of 38, 29, 20, 11, and 2. He chose to go first, selected 2, and 
won the game.  
 Diego’s behavior suggested he used more than a Nim-21 blocking scheme to determine 
his goal numbers. He generalized his Nim-21 scheme of “subtract four” to “subtract one more 
than the largest range number”. This had the effect of generalizing his Nim-21 scheme to a Nim 
scheme. 
 In using his Nim scheme, Diego made a play to reach a goal number, then awaited the 
total given him by the computer to determine his next choice. He paid no attention to the number 
the computer chose. He attended only to the current total given him. The computer’s choice did 
not play into his thinking. His underlying image was to await the computer’s total, then use it to 
reach the next goal number. 
 Pat raised the matter of Diego’s number in relation to the computer’s number in the 
context of reaching the next goal number. 
 
Excerpt 2 (after winning 38 and 8) 
Pat: Do you notice a relationship between what the computer chooses and what you choose 

to get to the next goal? 
Diego: No, not really. 
Pat: What happens when you are at a goal number so that you get to the next goal number? 
Diego: I add a number. 
Pat: What about the computer? 
Diego: It adds a number, too. 
Pat: What about those two numbers? What has to be true about them so you get to the next 

goal? 
Diego: (28 second pause.) They have to add up to 9! 
Pat: Why is that? 
Diego: Because if I’m at a goal number … if I’m at a goal number the computer will choose a 

number and then I’ll choose … I’ll choose … I’ll choose another number to get to the 
next goal number … and the next goal number is 9 away from the [goal] number I 
have.  

 
 Diego’s initial responses to Pat’s question confirmed our hypothesis about his underlying 
image of a play. It was not an image that combined his and the computer’s moves into one move 
that satisfies the requirement of reaching the next goal number. Instead, his image of a play was 
to take the number presented him and to figure the number needed to reach the next goal he’d 
already determined. At the beginning of Excerpt 2 Diego’s image of goal numbers was operative 
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because it was not tied to a specific state of the game—he was able to discuss goal numbers 
generally. Diego’s scheme for goal numbers made it possible for him to use images of goal 
numbers decoupled from specific game states. His image underlying his decision on the next 
play was figurative because it was tied to a specific state of the game. He did not have a 
combined play scheme that would allow him to decouple his image of his next move from the 
current game state. 
 Pat’s question, “What about those two numbers? What has to be true about them so you 
get to the next goal?” was instrumental in providing Diego an occasion to reflect on the 
relationships among current goal, computer’s play, his play, and next goal. We suspect that he 
organized, at least temporarily, the states of current and next goal as being connected by the 
combination of the computer’s and his plays. 
 We interpret Diego’s 28-second pause as him re-playing the computer’s and his move in 
succession. This gave him an occasion to consider the two moves together, as one. We cannot 
know whether Diego would have thought of this himself, but the fact that he assimilated the 
question and resolved it suggests that, in re-playing the game, he modified his image of a “play”, 
at least in that moment, to include both players’ moves that together would move the total from 
one goal number to the next. Diego’s modification of his image of a “play” in this way was a 
step towards him developing an operative image of a “play.” The development of a stable 
combined play scheme went along with the development of an operative image of a play that was 
not tied to a specific game state. 

 33 and 7 
 Pat suggested one last game. Diego chose 33 and 1-7 as target and range. Diego went 
through his working-back strategy to determine goal numbers 33, 25, 17, 9, and 1. He concluded 
that to reach one he had to go first. Despite the insight Diego stated after the previous game, he 
still focused on the number presented him and what he had to add to reach the next goal. 
 
Excerpt 3 (in the midst of 33 and 7) 
Pat: How are you deciding your number? 
Diego: I’m looking for the number to add to get the next goal number. 
 
 After Diego won, Pat asked again if there was a relationship between the computer’s 
number and his number when reaching the next goal. Diego quickly noted that the sum of his and 
the computer’s plays needed to be 8—for the same reason he stated earlier. However, it is 
important to note that, with 33 and 7, Diego did not use the insight he’d stated earlier (regarding 
sum of his and computer’s moves) in deciding his play. Instead of Number Computer Plays + 
My Number = 8, Diego’s image of play continued to be Current Total Given Me + My Number 
= Next Goal. 
 Pat ended the session by thanking Diego for participating and suggested he play the game 
with his family before the next meeting. Pat texted Diego late the next day to ask if he’d played 
the game with his family. Diego replied, “No, I’m still trying to get my head around it.” We 
presumed by “it” Diego meant “strategy”. 
 
Session 2: July 28, 2020 
Diego’s attendance at surf camp led to an 11-day break between sessions. He had not played the 
game with anyone, but he had thought about the game. Pat asked Diego what he remembered.  
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Excerpt 4 
Pat: Do you remember the game we played? 
Diego: Yeah. Nim. Yeah. 
Pat: Do you remember how it is played? 
Diego: Yeah. 
Pat: How is it played. 
Diego: So … first person to get to 21 wins. If you choose one you go first, if you choose two 

you go second. And the first person to get to 21 wins. 
Pat: How do you get to 21? 
Diego: So, you gotta go first, and you choose … two … no. You have to choose// 
Pat: //What numbers are you choosing from? 
Diego: Oh. One, two, and three. 
Pat: I think you were trying to remember the strategy you used? 
Diego: Yeah. 
Pat: What was that strategy? 
Diego: (4 second pause.) His number and your number have to add up to four. 
Pat: Why is that? 
Diego: So then that, so then (yawns) so you keep getting to the places where you know 

you’re able to get to 21.  
Pat: Okay. 
Diego: I know … I know that sounds confusing. 
Pat: Well, instead of just telling me about it let’s play a game. 
Diego: Okay. 
 
 We were struck by Diego’s recollection of his strategy (in bold). What had been a 
transitory observation in his 7/17/20 session, an observation he never employed, had become a 
defining feature of his strategy on 7/28/20, despite no interaction in the interim regarding the 
game with us or between Diego and his family. Moreover, his strategy of 𝐶 + 𝐷 = 4 entailed a 
reason for it—this strategy blocked the computer from reaching any goal numbers. This suggests 
to us that on 7/17 Diego engaged in what Steffe (1991) called functional accommodation—the 
modification of a scheme in the context of using it—and that in the interim he engaged in what 
Steffe (1991) called metamorphic accommodation, which we understand as largely equivalent to 
Piaget’s meaning of projecting images and actions to a reflected level. In Excerpt 4 Diego had an 
operative image of combined play that was not tied to a specific game state. The development of 
this operative image was possible due to his reflection upon combined plays and the 
development of a stable combined play scheme. Diego’s combined play image was part of his 
combined play scheme—the scheme also included the entry points that trigger action and 
anticipations of action. As Diego’s combined play scheme became more stable, his images of 
combined play became more mobile and less dependent on specific aspects of the game. We say 
more about this in the discussion. 

21 and 3 
 In playing the first game with 21 and 3, Diego employed his strategy of working 
backward to determine the first goal number. However, he miscalculated 21 minus 4, saying 
“sixteen”, getting goal numbers of 21, 16, 12, 8, 4, and 0. He chose the computer to go first and 
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selected his number according to his new rule that the sum of the computer’s and his number 
must be four. Diego realized he would lose when the computer presented him with 17. 
 
Excerpt 5 
Diego: (Total is 17; D pauses for 21 seconds) Ooohhh. (Pause) 
Pat: Why the long pause? 
Diego: Um … cause seventeen … if I put three it’s twenty and he wins, if I put two its nineteen 

and he wins, and one he could just put three and he wins. 
Pat: What do you suppose the problem is? 
Diego: (Pauses for 26 seconds; whistles while thinking.) Oh, I went too far back. I was 

supposed to get to 17 first. So I lost. So just put two [just to finish the game]. 
Pat: So, you were supposed to get to 17, but you said 16? 
Diego: Yeah. 
 
 We interpret Diego’s 21-second pause as his imagining all the moves he could make in 
combination with the computer’s subsequent move and his 26-second pause as re-presenting (re-
playing) his original reasoning to get his list of goal numbers. He recalled thinking “21 − 4 =
16” and realized he should have said “seventeen”. We also note that this episode confirms 
Diego’s confidence that applying the condition 𝐶 + 𝐷 = 4 for each pair of moves was sufficient 
for him to win. 
 In the next game (21 and 3, again) Diego insisted on enacting his working-back strategy 
“just to make sure”, ending at one and deciding he should go first. He played appropriately, 
getting to each of his desired goal numbers. When the computer presented Diego with a total of 
10, Diego chose 3 to reach 13. Pat asked about how he was deciding on his choice of numbers. 
 
Excerpt 6 
Diego: (Computer presents a total of 10) Three. 
Pat: How are you figuring out what number to pick? 
Diego: Whatever number he chooses, I just need to pick the number that adds up to four. 
 
Diego “𝐶 + 𝐷 = 4” scheme was now at a reflected level. He knew applying it would necessarily 
land him at the next goal number without having to think of what the next goal number was. 

36 and 5 
 Diego again employed his working-back strategy, but this time just to determine the starting 
number. He counted 36, 30, 24, 18, 12 6, 0 then said, “But we cannot get to 0, so the computer 
needs to go first.” He did not mention a goal number while playing the game. Instead, as the 
computer played its number, Diego played a number so the sum of the computer’s and his 
numbers was six. 
 
Excerpt 7 
Comp: (Plays 1) 
Diego: Okay, five (total is six; computer chooses 5, total is 11). One  
Pat: How are you deciding what number to put in?  
Diego: Same thing. Whatever number they choose I just have to choose another number that 

adds up to six.  
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Pat: Why is six special? 
Diego: It’s one more than the number we can pick … so that they can’t go over the number we 

have to get to but we also can’t … err … and also we … it’s too … and also it’s not too 
much for us to get to.  

 
 Diego went on to win the game. He again confirmed that his strategy no longer relied on 
the total given him or the next goal number. It relied only on him determining the first number to 
play, using this number to decide whether he or computer should go first (computer first if first 
goal is 0; otherwise him first), and knowing what the sum of his and computer’s play must be. 
Diego felt confident that attending to these conditions would produce a winning strategy. He had 
developed a Nim scheme. 

General Nim 
Pat suggested one last game—77 as target and 1-10 as selection range. Diego again worked 
backward from the target by 11’s, getting 0 as the first goal number. Diego chose the computer 
to go first and won the game. Afterward, Pat asked about his general strategy. 
 
Excerpt 8 
Pat: Let me ask you a question. 
Diego: Yeah. 
Pat: It seems … and correct me if I’m wrong. It seems you start with the target number, and 

then go back to find the next smallest target number// 
Diego: //Yeah. That’s what happened. 
Pat: And you keep going back [Diego: Yeah] until you find the first target number 

[Diego:Yeah] and that tells you whether or not you go first? [Diego: Yep] Is that right? 
Diego: Yep. If it gets to one, then you have to go first, but if it gets to zero then they have to go 

first. 
Pat: What if you get to two? 
Diego: You can still go first … unless … the boundary … the number … unless the number 

limit you have to choose from is less than two … which would be kinda boring. 
 
 Diego’s last statement shows he not only reasoned generally about his strategy, he saw 
implications of alternative conditions (“unless the number limit is less than two …”). We take 
this as evidence that Diego’s goal number images and combined play images were now 
operative. Because of the generality of Diego’s summary, Pat decided to raise the issue of 
efficiency. 
 
Excerpt 9 
Pat: That’s very good! Now … could you think of a way to figure out what the first number 

should be without having to go back step by step? 
Diego: I guess that (pause) if … oh, hold on, I’m just noticing. When it was 21, they had to go 

first. Oh no. We had to go first. So I feel like, if it’s 21 … if the number limit is 
divisible by the number limit you’re allowed to choose, then you have to go first. 

Pat: So 21 is divisible by 3// 
Diego: //Oh, no. But 36 isn’t divisible by 5. And do you remember … can you go back and see 

if they had to go first on 36? Scroll up to see the previous game. 
Pat: (Scrolls back to the game of 36 and 5.) You had the computer go first and it chose one. 
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Diego: Yeah, they went first. If the target number is divisible by the highest number you 
choose from, then you have to go first. 

Pat: But 36 is not divisible by five. 
Diego: And the computer went first! (Pause) So if it’s not divisible by the highest number 

you’re allowed to choose from, then the other person has to go first! 
Pat: Why do you suppose it works that way? 
Diego: (Looking into the air) Because that … it’s always gonna leave … … like … it’s always 

gonna leave … a higher number than … it’s alw … ahh … it’s always gonna end up 
like … it’s never gonna end up … hmm, hold on. (Pause) Yeah. That makes no sense. 
(Pause.) Here. Let’s do … so … so … from what we’ve seen right now it’s um an odd 
number has to make the computer go first and an even number has to make … wait no, 
not even number. A number divisible by that means I have to go first. So let’s just see 
… make … do … do like 30 … do like 32 and then do 4 … 32 is divisible by 4, yeah. 

 Diego’s response to Pat’s question, “Could you think of a way to figure out what the first 
number should be without having to go back step by step?” has earmarks of what Piaget called 
pseudo-empirical abstraction. By this we mean that Diego looked for a pattern that related game 
conditions (target number and range) and the decisions he had made in light of them. He 
reflected on the products of his reasoning, not the reasoning in which he engaged to create those 
products. This is not a criticism. Rather, it is an observation.  
 Diego tested his hypothesis on 32 as target number and 1-4 as range—and lost. Pat 
suggested he try his working back strategy again. Diego did this—32, 27, 22, 17, 12, 7, and 2—
noting he had to go first and start with two. Pat determined it would be a long struggle for Diego 
to refine his strategy further, so he used an intervention common in exploratory teaching 
interviews (Castillo-Garsow, 2010; Moore, 2010; Steffe & Thompson, 2000). This was to offer a 
suggestion to see how Diego might understand it and how he might subsequently use it. An 
intervention move within an exploratory teaching interview can unveil the nature of and 
boundaries of the interviewee’s schemes. 
 
Excerpt 10 
Pat: So going back … I’m going to remind you of something. Each time you went back, you 

subtracted five, right? [Diego: Yeah] You subtracted one more than the upper limit. 
[Diego: Hmm hmm] Repeated subtraction is like division. [Diego: Hmm hmm] So you 
went back some number of fives and you got to two. [Diego: Yeah] So, if you divide 32 
by 5, what remainder do you get? [Diego: Two] (5 second pause) And what’s special 
about 2? 

Diego: You could go first and get to 2, and then you could get to 7 first, you just … you kinda 
win. 

Pat: So let’s try that. This time I’m going to try 45 and 6. Now, without using target 
numbers, see if you can find the first target number. 

Diego: Seven divided by 45 is … (40 second pause; D looks in the air). The remainder would 
be three. Because the closest number to that number that is divisible by seven is 42, and 
42 divided by seven is six. And then the remainder would be three. So the first target 
number is three. 

Pat: So who goes// 
Diego:  //So I would have to go first. 
Pat: And when you say 42 divided by seven is six, what does that six mean? 
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Diego: (19 second pause) It means I would go back by seven six times. 
 
 It appeared Diego easily understood that his going back strategy entailed repeated 
subtraction, and he appeared to understand Pat’s statement, “repeated subtraction is like 
division.” He also inferred that the remainder after dividing 32 by 5 would be the first target 
number. Diego then applied a “division and remainder” strategy to a game with target 45 and 
range 1-6, concluding he had to start with three and the sum of plays had to be seven. Diego also 
understood the relationship between dividing 45 by seven and his working-back strategy—
dividing 45 by seven would give the number of times he would go back by seven to get the 
starting number and the remainder would be the starting number. Afterward, Diego celebrated. 
 
Excerpt 11 
Diego: So now I know how to do it without having to go back step by step! 
Pat: Isn’t that cool that you can figure out [where to start and] what number to add without 

knowing any of the target numbers except the last one? 
Diego: Yeah. 
Pat: So, just … okay, we can finish this now. But if you could, tell me what your general 

strategy would be no matter what numbers I pick. 
Diego: Umm. Get to the remainder first.  
Pat: Remainder of what? 
Diego: Get to the remainder of the number … get to the remainder of the goal number divided 

by the highest choice number plus one. 
Pat: And that remainder tells you what? 
Diego: And then … and then … that remainder tells you if you should go first or if they should 

go first and then you always have to get … you have to see what their number is and 
add another number to get the number … to get … to get to the highest number plus 
one. 

Pat: When should you have the computer go first? When should you decide to have the 
computer go first? (Zoom connection fails) Diego? Diego? 

 
 The broken Zoom connection was because Diego’s phone battery died. Excerpt 12 shows 
their exchange of text messages following the Zoom failure. 
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Excerpt 12 

 
 
Excerpt 11 and 12 provide evidence that Diego made metamorphic accommodations to his Nim 
scheme. His final Nim strategy was much more efficient than his first winning strategy. His final 
strategy was more efficient and qualitatively different than his first winning strategy because he 
integrated his division scheme to avoid needing to repeatedly subtract to find each goal number. 
Diego reflected on images of goal numbers and combined play to accommodate his Nim scheme 
to be more general.  
 
Discussion 
It is important to note that Diego did not write anything down, nor was there a visible record of 
his thinking. There was only what the computer presented after each player played. Diego had no 
visual record of his reasoning to aid his reflections. He only had what he could recall of his 
reasoning and its results as images to reflect upon.5 
 Diego’s imagery for the game rested in his re-presentations of his reasoning, and 
sometimes re-presentations of his conclusions. The role of Diego’s images evolved as his 
schemes evolved. His initial imagery consisted of his reasoning about specific numbers in 
specific contexts. Diego re-enacted his reasoning in order to think about it. This is an instance of 
deferred imitation. Early on, Diego’s remembered decisions did not entail the reasoning leading 
to them, consistent with his scheme at that time employing imagery figuratively. His decisions 
were simply the last step in his chain of actions. Later, Diego differentiated between his 
decisions and the reasoning leading to them, which allowed him to begin projecting his 
reasoning to a reflected level. Finally, Diego generalized his images from specific game states to 
arbitrary game states, consistent with his imagery operating at a third level because he had 
created his Nim scheme at a reflected level. We provide a detailed summary of Diego’s 
development of his Nim and General Nim schemes below. 
 

 
5 It is plausible that had Diego created a written record, his writing might have prompted him to engage more 
frequently in pseudo-reflective abstraction. 
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Nim Scheme 
• An image of being blocked. Diego experienced “I was blocked” twice. He developed the 

image, “The computer gave me a number that kept me from reaching a goal number. There are 
numbers that ‘block’ a player from winning.” 

• A “Blocking” scheme—find all the blocking numbers. A blocking number keeps the computer 
from reaching the next goal number and ensures he can reach the next goal number. Diego’s 
blocking scheme relied on his image of a blocking number. 

• A “First number” scheme—if the first goal number is 0, the computer goes first. If first goal 
number is not zero, go first and select that number. This scheme relied on Diego having an 
image of having executed his blocking scheme. 

• A “Combined play” image—a combined play takes the game from one goal number to the 
next.. In Excerpts 2 and 3 Diego reasoned that the sum of his and computer’s play had to be a 
certain number (9 in one instance, 8 in the other), but he seemed not to have had a “combined 
play” image. He did not recall these conclusions upon playing the next game. It was after the 
11-day break that Diego seemed to have an image of the computer’s play and his play as one 
play.  

• A “Combined play” scheme—decide what to play based solely upon the computer’s play and 
the selection range. 

• A Nim scheme—we saw in Excerpt 7 that Diego coordinated his First Number scheme with 
his Combined Play scheme to form a Nim scheme. He was confident his Nim scheme would 
produce a winning strategy regardless of the target number and selection range. 

 Diego had developed a scheme for Nim. He developed it over time by coordinating his 
blocking scheme, first number scheme, and combined play scheme to make a strategy for 
winning the game regardless of the target number and selection range. His coordination of 
schemes was enabled by having projected each to a reflected level. We are comfortable saying 
this because he could articulate each in general terms not reliant on any specific game. In each 
case, the projection happened as a result of reflecting on images of his reasoning that he gained 
from playing the game. Diego’s images became more mobile and flexible. Figurative images 
became operative as Diego’s schemes developed through reflection and repeated reasoning. 
 One of Piaget’s defining characteristics of operating at a reflected level is that the person 
is aware of their schemes and uses them to explain their reasoning. That Diego coordinated his 
blocking, first number, and combined play schemes, and explained how they worked together 
confirms to us he had indeed projected them to a reflected level. 
 
General Nim Scheme 
 Diego went beyond his initial Nim scheme. He assimilated Pat’s suggestion to think of 
repeated subtraction as division and used that idea to develop more than a winning strategy. He 
employed already-developed schemes for division (as repeated subtraction) and remainder to 
understand Pat’s suggestion and saw how it related to his blocking scheme (repeated subtraction) 
in determining the first goal number. He modified his Nim scheme by incorporating the scheme 
“First	Number = mod(𝑁,𝑀)”.6 Had Diego not had a well-developed division scheme, he 
would not have seen the relevance of Pat’s suggestion. 

 
6 This is our description, not Diego’s. 
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 We note in closing that Diego’s speech over time gives an indication of how he 
generalized his imagery. His earlier statements were about specific numbers. Later statements 
were about “computer’s number”, “my number”, “goal number”, and “one more than the biggest 
number we can choose”. We take Diego's use of literal names for states as enabling him to 
differentiate his reasoning from the specific contexts in which his reasoning occurred and from 
the specific conclusions he drew. This also supported Diego’s projection of his reasoning to a 
reflected level. His use of literal names for objects upon which he acted supported his focus on 
the actions he took to get from one state to another. 
 We interviewed Diego again after a lapse of 15 months. He did not recall Nim nor how it 
is played. We reminded him of the rules and played a game of 21. After a short pause, he 
recalled his Nim scheme (finding goal numbers and first number) and used it to win. We then 
played 45 and 1-8 and he again employed his Nim scheme to have the computer go first, and he 
won. In the third game (67 and 7) he recalled his generalized Nim scheme, found the remainder 
of 67 ÷ 8, chose to go first, gave three as his first number, and won. This all happened in less 
than 20 minutes. The rapidity with which Diego reconstructed his generalized Nim scheme 
suggests to us we are correct to have called it a scheme. 

Implications for Math Education 
We shared Diego’s case study specifically to highlight that students’ images of having reasoned 
are the primary fodder for productive reflection and hence for productive scheme formation. 
Students’ images of their reasoning become transformed into operations of thought they can 
apply outside specific contexts in which their reasoning occurred. This fact has implications for 
mathematics teaching and mathematics education research. 
 
Implications for mathematics teaching 
To help students form images of having reasoned so they may reflect upon them is not the same 
as asking “Why did you do that?” or “How do you know that?” Those questions often sound to 
students like they are being policed. A teacher highlights reasoning instructionally by 
engendering reflective discourse (Cobb et al., 1997; Stein et al., 2008) with and among students, 
and by creating didactic objects to support reflective discourse (Thompson, 2002). Designing 
instruction to bring students’ imagery into the open and to support reflective discourse means to 
orient students to discuss ways they are understanding situations (“What do you see going on in 
this situation?” “Share with us what you imagined about this situation when you said that?”), 
meanings and reasoning they are trying to convey (“Help us understand what you meant by 
that?”), ways they are understanding diagrams and animations (“What do you see happening in 
this animation?” “What do you see this diagram depicting?”), and their reasoning in the context 
of solving a problem (“Please share your strategy, if you can.” “What stood out to you when you 
decided to divide?”). Of course, those cannot be idle questions. A teacher conveys genuine 
interest by incorporating students’ answers into the classroom conversation. 

Fostering reflective discourse also entails having students attempt to understand others’ 
reasoning and reflect on meanings they might intend. Reflective discourse takes students’ 
imagery, meanings and reasoning as objects of class discussion. Instructors fostering reflective 
discourse continually demonstrate that they care about and value students’ understandings—
instructors convey to students that they are interested in students’ images and meanings-in-the-
moment (Hackenberg, 2010). Cobb et al. (1997) and Clark, Moore and Carlson (2008) reported 
teachers’ consistent support of reflective discourse can positively affect students’ attitudes and 
classroom atmospheres. Under a teacher’s guidance, sharing the foundations of one’s thinking, 
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and expecting the same of others, becomes a classroom mathematical practice (Yackel & Cobb, 
1996). 
 Although Pat’s interactions with Diego were in an interview setting, Pat’s questions to 
Diego did have an instructional effect. For example, Pat’s questions “How are you deciding what 
number to select?” and “Do you see a relationship between the computer’s number and your 
number?” appear to have caused Diego to reflect on his reasoning when he might not have done 
so otherwise. Also, Pat’s questions prompted Diego to formulate responses to those questions. 
As noted by Inhelder and Piaget (1964), the attempt to express one’s reasoning to oneself, or to 
communicate one’s reasoning to another person, is a primary stimulant for reflection. Questions 
like these, offered at timely moments, can be incorporated into instruction. 
 
Implications for mathematics education research 
Diego’s case exemplifies a methodological focus on students re-presenting their reasoning to 
themselves as necessary for reflection. This focus entails timely probes about what the situation 
under discussion is to the student. It also exemplifies a focus on asking questions that prompt 
students to explain their decisions. But probes into students’ decision-making processes must be 
crafted carefully. They must not appear to the student as demands for justification. Instead, you 
want probes to convey to students that you are genuinely interested in how they are thinking. 
“Help me understand how you thought about this?” exemplifies a genre of questions that can be 
useful in gaining insight into students’ imagery and reasoning. 
 Diego’s case also highlights our stance that it is students’ images of having reasoned that 
provide the fodder for reflection. To live this stance in your research requires that you take 
students’ verbal statements and symbolic work as a clouded window into their thinking—that 
you must probe to gain insight into what they meant when they said or wrote what they did and 
how they imagined their actions being relevant to the situation as they conceived it. 
 

Imagery in the Projection from Figurative to Reflected Thought 
Piaget spoke of two kinds of reflecting abstraction. The first is to construct schemes at a reflected 
level while the second is to reason at first with schemes at a figural level and then move one’s 
reasoning to counterpart schemes that have been created at a reflected level.7 This case is a study 
of the latter. 

Michael and Robert are mathematics educators. Michael shared with Robert a task for 
students asking them to predict the graph of  as a transformation of the graph of 

. Robert first thought about the problem in terms of slots— , largely as a figural 
generalization of . He envisioned the graph being transformed according to  
and then translated according to the value of b. Robert knew  would “compress” the 
graph of  by moving each value of  from above the value of x to above the value 
of . He knew “+1” would translate the graph of  one to the left by putting each 
value of  above the value of . Robert concluded that the graph of  is 
the graph of  shifted by -1. Michael said, “That’s not correct.”  
 Robert was immediately puzzled—he was sure his reasoning was correct. He first 
wondered how to test his claim. He knew, according to his theory of the situation, that all points 
on the graph of  would be shifted to the left by 1. He decided to produce both graphs 

 
7 We have seen this distinction translated in different ways by different translators and we do not know which terms 
to use for them. REVIEWERS—HELP!! 

y = sin(3x + 1)
y = sin(x) ( □ + b)

(x + b) y = sin( □ )
y = sin(3x)

y = sin(x) sin(x)
x /3 y = sin(3x)

sin(3x) 3x − 1 y = sin(3x + 1)
y = sin(3x)

y = sin(3x)
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on the same axes and examine one point on the graph of  shifted like he thought it 
should. Robert’s investigation confirmed that the graph of  is not the graph of 

 shifted by 1 (Figure 9). 

 
Figure 9. Robert’s test of his initial claim. 

 
 Robert puzzled about why the graph of  is not necessarily the graph of 

 shifted by 1. He used the mouse to highlight points on the graph and noticed the 
graph seemed shifted to the left by 1/3 instead of 1. He wondered, “How is it possible for three 
as a coefficient of x to affect the effect of adding 1?”  
 Robert eventually asked himself, “What am I doing when I shift a graph by changing its 
argument?” Focusing on the idea of argument opened him to think of  as a composite 
function. He then considered  as  and  as the composite 
function h(k(x)). Robert employed similar imagery as initially to understand how a graph is 
shifted when a function’s argument is itself a function: Start with a value x=c (Figure 10a), move 
the value x=c on the x-axis by the function k to arrive at  (Figure 10b), “pick up” the 
value of  (Figure 10c), move from  back to x=c by  (Figure 10d), then 
plot the value of  above x=c (Figure 10e). He concluded that the graph of  will 
appear to be the graph of  but with each value  plotted above or below , 
provided  exists. 

y = sin(3x)
y = sin(3x + 1)

y = sin(3x)

y = sin( □ + 1)
y = sin( □ )

sin(3x + 1)
sin(3x + 1) sin(a x + b) sin(a x + b)

x = k (c)
h(k (c)) x = k (c) k−1(k (c))

h(k (c)) y = h(k (x))
y = h(x) h(x0) x = k−1(x0)

k−1(x0)
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Figure 10. Our rendition of Robert’s drawings and his reasoning about them. 

 Robert then applied this result to the graph of y=sin(k(x)) where k(x)=ax+b to see that the 
graph of y=sin(x) is “shifted” by the function  so that each value of  appears above or 
below . In this particular case, the graph of  is the graph of 

 with each value of  plotted above or below . He explained his new 
approach as,  

You want to anticipate the graph of  given the graph of . 
Imagine standing on the graph of  at, say, x = x0. Where did this value x0 

k−1 sin(x)
k−1(x) = (x − b)/a y = sin(3x + 1)

y = sin(x) sin(x) (x − 1)/3

y = h(k (x)) y = h(x)
y = h(x)
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come from? It came from a value x = c  so that . Where will the value of 
 appear on the graph of ? It will appear above or below 

. In the case of  and , any value   will 
appear at a value x = c so that , or . This tells me that to 
get the graph of  start with the graph of , shift it to the 
left by 1, then compress that graph by 1/3. But this will be true of any function f. 
The graph of  will be the graph of  but with each value 

 appearing above or below . 
 Robert shared his conclusion with Michael, who agreed that the graph of  
is the graph of  shifted by 1 then compressed by a factor of 1/3. Michael, however, had 
not considered the general case of composite functions that Robert used to arrive at this specific 
result. 
 How do we possess a record of Robert’s inner thoughts? Because Robert was Pat 
Thompson and Michael was Alan O’Bryan. Pat, realizing this was a potentially important event, 
wrote a log of his thoughts as he puzzled through his confusion. Figure 10 is our rendition of his 
unorganized drawings. 
 The central point of this example is that Pat first employed imagery at a figural level—
the level of action regarding an existing scheme. He initially assimilated the question to a well-
developed scheme for transforming graphs which allowed him to think primarily in terms of 
imagining specific actions on a graph in relation to the specific symbolic form . 
He thought of  as , concluding that the graph of  
would be the graph of  shifted by 1 to the left. He moved to a level of reflection only 
upon being faced with the invalidity of his reasoning.  
 Even at a reflected level, Pat employed images like what he conjured at a figural level. 
He envisioned how the original and new graphs are related by picking an arbitrary value on the 
x-axis where a value of the composite function would be plotted and moving to a location on the 
x-axis (by evaluating a function’s argument) where the original function would be evaluated . 
These images initially were figural with respect to Pat’s “translate a graph” scheme that 
employed them. They became operative when he moved to a reflected level to think of 

 as y = h(k(x)). At a reflected level, he thought of a function and its graph, but not 
a specific function or a specific graph. Any graph would support his thinking of movements on 
the x-axis by an arbitrary function k and its inverse. He also thought of an arbitrary argument to 
the composite function. His images were arbitrary while still providing a context for the 
transformations he employed—evaluating the composite function’s argument to get a location 
for evaluating the original function, then using the argument’s inverse to move that value of the 
function back to where it would be plotted as a value of the composite function. He then thought 
of this transformation as being applied to every value in the domain of the argument. Pat 
resolved his initial confusion about the graph of  in relation to the graph of 

 by answering a general question about the graph of a composite function  
in relation to the graph of  for any functions f and g. He also understood his reasoning 
applied only where g has an inverse function. 
 It is important to understand that this is not a story about Pat constructing a higher-level 
scheme, like Diego, through the abstractive phases of empirical, pseudo-empirical, and reflecting 
abstraction. He already possessed the schemes for functions, function notation, function inverse, 
and function graph he eventually employed. Instead, this is a story of someone projecting their 
figurative reasoning to an already-present reflected level—a level of already-existing operative 

x0 = k (c)
h(x0) y = h(k (x))
c = k−1(x0) y = sin(x) y = sin(3x + 1) sin(x0)

x0 = 3c + 1 c = (x0 − 1)/3
y = sin(3x + 1) y = sin(x)

y = f (3x + 1) y = f (x)
f (x) (x − 1)/3

y = sin(3x + 1)
y = sin(x)

y = sin( □ + 1)
y = sin( □ + 1) y = sin(x + 1) y = sin( □ + 1)

y = sin( □ )

y = sin(3x + 1)

y = sin(3x + 1)
y = sin(x) y = f (g(x))

y = f (x)
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schemes. Pat understood all along he was solving the original problem, but with the additional 
understanding that he was solving a general version of that specific problem. Pat’s attention was 
focused initially on the graph of  in relation to the graph of . He re-
imagined the problem to be about the graph of  in relation to the graph of  
for arbitrary functions h and k. 
 It is also important to note that the role of Pat’s images changed from his initial to final 
thoughts. Initially, Pat’s imagery provided a template for his assimilation of the problem, 
assimilating  as , where  was a figurative generalization of 

. Even though his imagery for  involved movement, it was figural regarding 
the scheme to which he assimilated it—a scheme in which the added constant specified the 
direction and distance the function’s graph would be translated. Pat’s images at a reflected level 
served as arbitrary states of transformations—moving an arbitrary displacement on a number line 
with respect to an arbitrary graph. Pat understood movements along an axis being “caused” by 
evaluating functions and understood locations on the number line as related by being values of 
an argument or its inverse. This role of imagery is in line with Piaget’s third form, describing the 
role of images in relation to operative thought (see quotation on page __). They served as 
“momentary states” in Pat’s reasoning about transformations from original graph to desired 
graph. The specific images Pat employed were not necessary to invoke the transformations 
which related them. 
 Although Pat did not construct a higher-level scheme through elaborate abstractive 
processes of differentiation, integration, etc., he did construct a new scheme—and therefore a 
new meaning—for “transform a graph”. He connected (assembled) existing schemes in, for him, 
a novel way. Initially, his meaning for “transform a graph” was to think of the form of a 
function’s argument and what it implied about how a function’s graph changes. His meaning at 
the end was crystalized as how the original function’s values are “re-positioned” on the 
independent axis by the inverse of the original function’s argument when the argument is viewed 
as a function. 
 
Implications for Mathematics Education 
We shared Robert’s (Pat’s) case study specifically to highlight again that images of having 
reasoned are the primary fodder for productive reflection. This time, unlike Diego’s case, 
“productive reflection” meant to project the situation as Pat originally conceived it to a reflected 
level of already-existing schemes. That imagery of having reasoned is important even when 
moving to reflected mathematical thought has implications for mathematics teaching and 
mathematics education research. 
 
Implications for mathematics teaching and mathematics education research 
Solving a specific problem by solving a generalized version of it is a standard move in higher 
mathematics. At the same time, it is a rare move in school mathematics and a move made 
without students’ noticing it in undergraduate mathematics. We are unaware of research into this 
phenomenon from a genetic epistemology foundation. The closest we know is research on 
problem posing (see Cai et al., 2015), especially the early work by Brown and Walter (1983, 
1993). Problem posing, as originally crafted by Brown and Walters, is to provide facts about a 
situation and ask students to craft problems from these facts. Cai et al. (2015) surveyed research 
on problem posing as an instructional technique, concluding that employing it in instruction has 
a positive impact on students’ problem-solving abilities. 

y = sin(3x + 1) y = sin(x)
y = h(k (x)) y = h(x)

y = sin(3x + 1) y = sin( □ + 1) □ + 1
x + 1 y = sin( □ + 1)
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 We suspect students in problem-posing studies engaged in various forms of reflection to 
create their problems. Reports that “more able” students pose more and more complex problems 
than “less-able” students (Cai et al., 2015; Marsh & Yeung, 1998) suggests to us that “more 
able” students were engaging in projection to reflected thought. However, we are unaware of 
problem-posing studies that examined students’ behaviors from a perspective of images they 
formed and their reflections on those images. One technique employed by Brown and Walters is 
ripe for research on students’ imagery and reflection. It is to have students revisit a problem 
repeatedly, to relax constraints in each iteration so they produce ever more general versions of 
the original problem. Generating generalized problems, and discussing their generalization 
processes, could provide opportunities for reflection. Researching their solving activities for the 
problems they generate could then provide occasions to explore the connections they actually 
make between their underlying imagery and reflective processes. 
 

Discussion 
Our thesis throughout this chapter has been that images of having reasoned are the foundation for 
reflection and scheme development. We stressed that imagery includes visualization but includes 
far more than visualization. We recapped Piaget’s levels of imagery and expanded their meaning 
to make them useful for modeling mathematical scheme formation at any level of sophistication. 
We included the case study involving composite functions specifically to show Piaget’s 
constructs can be used to model higher level mathematical thinking. We illustrated the interplay 
among imagery, reflection, and scheme formation through two case studies and explained the 
implications of each for mathematics teaching and research. 
 In this discussion we will highlight an aspect of Diego’s case study that was central to the 
work with Diego but remained tacit in our accounts. It is our preparation for the interviews— 
task selection and design together with conceptual analysis of the game. 
 We settled on Nim as the context of our interviews for two reasons. First, we wanted to 
avoid as much as possible Diego’s need to create written records of his work. We are not 
suggesting that symbolizing is unimportant—far from it. Our past research and teaching, 
however, convinced us that one effect of students’ mathematical schooling is they often engage 
in premature symbolization. We say “premature” because students often create inscriptions 
which then turn into the objects of their attention. Their focus on past inscriptions then diverts 
their attention from the reasoning that led to them. We also considered that readers might think a 
case study of learning the game of Nim is unrelated to learning school mathematics. This would 
be true if we have in mind standard school mathematics. But reflective discourse is not standard 
in school mathematics, and we wished to highlight that it is students’ reflection on their images 
of prior reasoning that is central to their advancement. We argue that the case of a student 
constructing a fairly complex scheme without recourse to pseudo-empirical abstractions from 
written work is highly relevant to ways students could learn mathematics in school. As the last 
interchange with Diego showed, he did symbolize his thinking, but he did so only after his 
thinking advanced to a state where the symbols retained their meaning within his reasoning. 
 Glasersfeld defined conceptual analysis by a question, “What mental operations must be 
carried out to see the presented situation in the particular way one is seeing it?” (Glasersfeld, 
1995, p. 78). Thompson expanded Glasersfeld’s meaning of conceptual analysis to include four 
uses:  

1. in building models of what students actually know at some specific time and what 
they comprehend in specific situations,  
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2. in describing ways of knowing that might be propitious for students ’mathematical 
learning,  

3. in describing ways of knowing that might be deleterious to students ’understanding of 
important ideas and in describing ways of knowing that might be problematic in 
specific situations, 

4. in analyzing the coherence, or fit, of various ways of understanding a body of ideas. 
Each is described in terms of their meanings, and their meanings can then be 
inspected in regard to their mutual compatibility and mutual support. *(Thompson, 
2008, p. 59) 

 We employed conceptual analysis according to #1 in our analysis of Diego’s interviews. 
We employed it according to #2 in our preparations for the interview—we analyzed the game of 
Nim according to what someone must understand to play it at the highest level and what schemes 
might be necessary to get there. We also drew on our own experience playing the game and from 
watching others play it. 
 For any game with target N and range 1-M, we considered My	First	Number =
mod(𝑁,𝑀) coordinated with Computer's	Play + Human's	Play = 𝑀 + 1 to be the most 
sophisticated strategy. We also anticipated that the first scheme would be Blocking and the 
second would be Goal Numbers. What we had to consider was how Diego might fill in the gaps 
between first schemes and final scheme.  
 We anticipated that the Computer's	Play + Human's	Play = 𝑀 + 1 scheme was crucial 
for Diego to advance to using division, for without that scheme he would not see that successive 
goal numbers are generated by repeatedly subtracting his and the computer’s combined play. 
This was why Pat repeatedly asked Diego, “How are you deciding your number?” and later 
asked, “Do you see a relationship between the computer’s number and your number?” 
 We also anticipated it would be crucial that Diego see a connection between repeatedly 
subtracting the combined play to determine first number and dividing target by one more than 
the range to find a remainder. When Pat determined this insight would be long in coming, he 
pointed out to Diego that he was using repeated subtraction and suggested the connection 
between repeated subtraction and division to see what Diego would make of it. Finally, we 
decided not to suggest Diego write anything down for the reasons we explained earlier. 
 The case of Robert (Pat) illustrates a second form of reflection that turns figurative 
imagery into operative imagery—the projection of a context assimilated figurally to schemes that 
employ images operatively. The trigger for this projection was Pat thinking of the “input” to the 
sine function as an argument to the sine function, which then led him to think of the original 
context more generally as a composite function. The case of Robert is different from Diego’s in 
that Pat already possessed the schemes to which he projected the context. We argued that Pat did 
not construct a scheme that employed images operatively. He already possessed those schemes. 
Instead, Pat constructed a new meaning for “transform a graph”. 
 In closing, we say again that our main purpose was to highlight three arguments. The first 
is that imagery, as re-presentations of experience, include far more than visualization. The 
second is that a main function of imagery in students’ mathematical learning is that they form 
images of having reasoned. This includes the kind of reasoning in which Diego engaged, it 
includes reasoning students use to interpret diagrams or animations, and it includes reasoning 
they engage in to comprehend a problem situation along with reasoning they engage in to solve 
it. The third is that imagery, as a construct, does not stand alone. Imagery as a construct is useful 
only to the extent that it allows one to focus on the contexts of students’ schemes and meanings 
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and to employ reflective abstraction as a construct for explaining and investigating students’ 
mathematical learning. 
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